The MST of Symmetric Disk Graphs Is Light
نویسندگان
چکیده
Symmetric disk graphs are often used to model wireless communication networks. Given a set S of n points in R (representing n transceivers) and a transmission range assignment r : S → R, the symmetric disk graph of S (denoted SDG(S)) is the undirected graph over S whose set of edges is E = {(u, v) | r(u) ≥ |uv| and r(v) ≥ |uv|}, where |uv| denotes the Euclidean distance between points u and v. We prove that the weight of the MST of any connected symmetric disk graph over a set S of n points in the plane, is only O(log n) times the weight of the MST of the complete Euclidean graph over S. We then show that this bound is tight, even for points on a line. Next, we prove that if the number of different ranges assigned to the points of S is only k, k << n, then the weight of the MST of SDG(S) is at most 2k times the weight of the MST of the complete Euclidean graph. Moreover, in this case, the MST of SDG(S) can be computed efficiently in time O(kn log n). We also present two applications of our main theorem, including an alternative and simpler proof of the Gap Theorem, and a result concerning range assignment in wireless networks. Finally, we show that in the non-symmetric model (where E = {(u, v) | r(u) ≥ |uv|}), the weight of a minimum spanning subgraph might be as big as Ω(n) times the weight of the MST of the complete Euclidean graph.
منابع مشابه
The MST of Symmetric Disk Graphs (in Arbitrary Metrics) is Light
Consider an n-point metric M = (V, δ), and a transmission range assignment r : V → R+ that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communication ne...
متن کاملThe MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light
Consider an n-point metric space M = (V, δ), and a transmission range assignment r : V → R that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than δ(u, v). SDGs are often used to model wireless communicati...
متن کاملInvestigation of absorption pump light distribution in edged-pumped high power Yb:YAGYAG disk laser
In this article, we present a specific shape of disk laser which is side-pumped by four non-symmetric hollow- ducts. The use of non-symmetric hollow duct based on two goals of the uniformity of the pump light distribution profile and the homogeneity of pump light profile through the disk. First of all we simulated the pump light distribution in the disk by using Monte-Carlo ray tracing method. ...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملClassifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Geom.
دوره 45 شماره
صفحات -
تاریخ انتشار 2010